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Summary

In the paper a unified theory of testing for variance components in two variance
component models is presented. Four equivalent approaches to the problem of reduction
by invariance principle are discussed. The relations with the general approach of Kariya
and Eaton are given. A test based on admissible estimators of variance components is
given. Some invariant tests are presented as functions of maximal invariant statistics
and relations between the tests are discussed. Necessary and sufficient conditions for
existence of the uniformly most powerful invariant test are given. Examples of models
that assure the existence of the uniformly most powerful invariant test are considered
separately. For such examples the power functions of these tests are evaluated.

1. Introduction

We consider the following linear model

y=Xp+UE+e , (1.1)

where y is a normally distributed n-vector of observations, X is a known nxp-
matrix of the rank p, B is a p-vector of unknown fixed parameters, U is a known
nxm-matrix, € is an unobserved random m-vector with the expectation zero and

with the variance covariance matrix 03I, , 06320 , while e is an n-vector of

random errors which are assumed to be uncorrelated with the components of E,
and such that

E(y) = XB, Cov(y) =02V + o’I,, V=UU’, 6520, 6°>0. (1.2)
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We are interested in testing for the hypothesis
H: 0=0vs K:05>0 (1.3)

or equivalently
H:0=0 vs K: 6>0, 6=0%/0% (1.4)

This problem has already been considered by several authors, usually for
particular cases of the model (1.2) and under some additional assumptions on
the structure of the variance-covariance matrix of y. The aim of this paper is to
present a unified theory for testing the hypothesis (1.4). All tests we consider
are invariant under a certain group of translations. We present four equivalent
approaches to the problem of reduction of the model (1.2) by invariance principle
that lead to construction of exact tests for testing (1.4). Necessary and sufficient
conditions are given under which all the tests coincide with the uniformly most
powerful invariant test (UMPIT). Examples of models corresponding to connected
two-way layouts are considered separately. For such examples the power func-
tions of these tests are evaluated.

2. Reduction of the model by invariance principle.
The Neyman-Pearson’s test

2.1 The approach of Olsen et al.

The problem of testing the hypothesis (1.4) is invariant under the group G,
of translations

&y)=y+XB.

Following Olsen, Seely and Birkes (1976) (see also LaMotte, 1976) a maximal
invariant statistics with respect to G, is t=By, where B is an (n—p)xn-matrix
defined as follows

BB'=1,, B'B=M.

Here M=1-XX’' X)X’ is the orthogonal projector on the kernel of X’ . The
vector of expectations and the covariance matrix of t is given by

E(t)=0, Var(t)=0iW +0’l,,, W=BUUB.. (2.1)
Denote by a; >0y >... 0, 20 the ordered sequence of the different eigen-

h
values of W with the multiplicities v,,...,v;,. Let W= Y loz,-E,- be the spectral
=
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decomposition of W and Z;=t'Ejt/v;, i=1,..,h. We shall assume through the
paper that i > 2.

The following lemma established by Olsen et al. (1976) gives basic statistical
properties of the statistic Z = (Z,,...,Z;)".
Lemma 2.1.

@)V; Z; /(0T + 6 ~ 1y, i=12,.0,

(ii) Z= (Z,,...,Z;) is a minimal sufficient statistics for the family of

distributions of t,
-(iii) Z is a minimal complete statistics iff h=2,
(iv) Z,,...,Z, are statistically independent,
(v) for an arbitrary a = (a;, @s,...,as)’

E@'Z) = (Zq; 0)0° + (Ea)o” ,

2.2
Var(a'Z) = 2% aX(c50; + 622/ v; . @R

Let G, be the group of transformations g,(Z) = a’Z ,a >0, defined on the set
of sufficient statistics Z. Then the problem of testing the hypothesis (1.4) is also
invariant under the group G, . A maximal invariant statistics with respect to

Gy is
Z,=(Z,/Zy,.... 2, 1] Zy) . .
The distribution function of Z, is given in the next section (see also LaMotte et
al., 1988).
2.2. Thompson’s approach.
Thompson (1955) has considered the problem of testing the hypothesis (1.4)

for the particular case of the model (1.2) corresponding to two-way classification.
In application to the general model (1.2) the results of Thompson can be presented

as follows. Let C be an mxm-matrix given by
C=UB'BU=UI-XXX)'XIU. . (2.3)

Note that C is the Schur’s complement of X’ X in
A= XX XU
“|U'X U'U
(cf. Styan, 1983).

Denote by K the matrix whose the columns are the orthonormal eigenvectors
of C corresponding to the positive eigenvalues, and let



16

Q=Ul-XX X)'XTy=UMy,
SSy=yl-XX X) 'Xly=yMy,
SS,=SSy-QC'Q,
B,=XYy.

Theorem 2.1. (Thompson, 1955) The statistics B, G=K'Q and SS, are suffi-
cient for the family of distributions of y.

Thompson noted that the problem of testing the hypothesis (1.4) is invariant
under the group G, of transformations

B,j —»aB,+a;, G =aG, SS, —a’Ss, ,

where B, =(B,y, Byg,..., B,y)’, a; are arbitrary real numbers, while a>0. If

SS, >0, then a maximal invariant statistics with respect to G, is

S =(SS,))'L %G, (2.4)

where L is diagonal matrix with diagonal elements being the positive eigenvalues
of C.

To show an equivalence of the approaches of Thompson and Olsen et al. let
us note that if w is the normalized eigenvector of W =BUU'B’ corresponding to
positive eigenvalue o, then

CUBw=UBBUUBw=0UBwW and wBUU Bw=o.

It follows that ¢ = (1/Yo)U’ B'w is the normalized eigenvector of C corre-
sponding to the eigenvalue o . Let ¢;;, Cig,-..,.Ciy, be normalized eigenvectors of C
corresponding to o; , i=1,2,...,d, where d=h-1 if o,=0 andd = h if 0,>0,

i
while 4 is the number of different eigenvalues of W. Let C; = Z l_lc,-,c’i,. Then

d
C=3)  oC; is the spectral decomposition of C.
i=1

Note that

v,

QCQ=(1/a)Y y B'BUU B'w,wBUU' B' By =t Eit, i=1,.,d. (2.5
I=1

It follows that
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(lluz)Q'ClQ = V,'Z", i= 1:-"yd ’

d
QC'Q-= 2 viZ; ,

=1

h
SSy=yMy= Y, viZ; , (2.6)
i=1
thh if d=h-1 ((lh=0)

SSG:SSW_Q’C+Q={ 0 i d:h (w>0)

Note that since (n—p)x(n—p)-matrix W can be presented in the form W =W,W’, ,
where W, =BU is an (n-p)xm-matrix and C=U"B’BU, then

rank(W) = rank(C) (= g, say)
n-pz22q.
Besides v, = n-p—q is the multiplicity of zero eigenvalue of W and W is nonsin-

gular (SS, = 0) iff n-p=q. If we want to use the maximal invariant statistics S

given by (2.4) we have to assume, that n—p>q. In section 6 examples for which
n-p=q are given. This case is also considered in section 4. To find the probability
distribution function of the maximal invariant statistics S given by (2.4) note
that

LG ~N,{0,6*@+6L)}, SS,~o% ,

where 0 =02%/0, and that L™"/2G and SS, are statistically independent. Hence
the density of Yv,S =(SS,/ v,,)'” 272G is the same as a g-component multi-
variate Student’s ¢-statistic with v, degrees of freedom and with the location

vector zero and the covariance matrix £(0) = I + 6L. After straightforward calcu-
lations it can be found that this density has the following form

r 72 l—‘((Vh. + q)/z) c'h 2] (v, +9)/2
f(s) = (mvy)™? Trw,/2)  JdetEo) [1+s X' @)sT ™92,

Thus the probability distribution function of the maximal invariant statistics S
is proportional to

h-1 Vi

[1+Y Y 83 /(1 +0; Q) *9/2 @.7

=1 I=1

where
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S = (S“,..., Slvls S2l""’ S2V21'"’ Sh—l,l""’ Sh_lrvh-l)' )

h-1
while S,-,,...,S,-v‘, correspond to eigenvalue o, for i=12,....h-1, Z . Vv;=q (cf.

=
Thompson, 1955). Note that from (2.6)

ZS?I = (1/0(,-)Q'C,-Q/SS° =V;Z; /Vh Zy b= 1,...,h-1 ’
=1

and (2.7) becomes

h-1
[1+ 3, Z; /v Zy(1+ oy 9T +D /2
i=1
h
= (Vv Zh)(V;. +q)/2[Zvi Z,/(l + oy 9)]‘(V,, +q)/2 : ©.8)

=1

Thus the ratio of the density of S at the null hypothesis H: 6 =0 and at the
alternative K: 0=0, is

h h (v, +q)/2
R=\¥ViZ | [Xv:Z; | 1+ 0,0.)] . 2.9)
-

=1

It follows that the test based on Neyman-Pearson’s lemma for testing
H:0=0vsK: 0=, 0,> 0, rejects H for sufficiently large

h h

Fne0) =2 Vi Zi | [3v; Z; /(1+ ; 0,)] .

i=1 i=1

As it has been mentioned earlier, Thompson’s approach needs the assumption

that W is singular (n>p+q). Further we shall show that without any additional

assumption on the model the Neyman-Pearson’s test for H: =0 vys
K: 0=6,, 6,>0isbased on the test statistics Fyp(6,).

2.3. Mathew’s approach

The reduction of observed vector y to maximal invariant statistics S proposed
by Thompson (1955a) is done in two steps. In the first step the problem of testing
the hypothesis (1.4) is reduced to sufficient statistics B,, G and SS, (cf. Theorem

2.1). In the next step we find the maximal invariant statistic S with respect the
group G, of transformations on the set of sufficient statistics.
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For the group G of transformationsy — a(y + XB) a >0, Pe R”, preserving
the problem of testing the hypothesis (1.4) Mathew (1988) has considered a
maximal invariant statistics of the form

T=t/l tll =By/yMy, (2.10)

where t = By, B is the matrix defined in the section 2.1, while || t || =+t%.
Using the results of King (1980, Theorem 1) Mathew has given the following
form for the ratio R of density functions of T under alternative K: 6 =6, and

under the null hypothesis H: 6= 0

R = [det (£(6))T"/2 [det(X’ X)]"*[det(X’ E@)X)]'/*R, ,

where

)

g [t’g + W) 't
. t't

¥0)=I+68V and W=BVB'.

] —(n-p) /2

It follows that the test based on the Neyman-Pearson’s lemma for testing
H:0=0 vs K: 0=0,>0 rejects H for sufficiently large t't/t’'(d+06,W)7t.

h
Using the spectral decomposition W=7 . o,E; it is easy to find that
=

h
@+0.W) ' =Y (1+0.0)7'E;
i=1
and
h h
tt/ A+ 0. W) 't =Y, v; Z; / [, Vi Z; /(1 +0; 6.)] = Fp(6.) .
i=1l =1

Note that this result has been obtained in section 2.2 under assumption that
W is singular. Here this assumption is dropped.

2.4. General approach of Kariya and Eaton

The results presented in sections 2.1 to 2.3 on construction of the exact test
for testing (1.4) can be obtained directly by using the general approach of Kariya
and Eaton (1977).

Let O(n) be the group of nxn orthogonal matrices and let @ be the class of
functions g such that

g: [0,0) = [0,), g is nonincreasing and JR,‘ gl tdt=1.
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For x € R" and for a fixed matrix X let
F.={f: fix)=AGx), Ge 0n)} ,

FE) ={f: fx)=[det@)T"*gx='x), g Q }.

Let us note that N(0, 6’I) € %,, while N(0,X)e FE),

The following theorem has been proved by Kariya and Eaton (1977, Theorem
3.1).

Theorem 2.2. ForafixedX & #o°I)the uniformly most powerful test for testing

He:'fe F, v8 K fe F@) (2.11)

rejects H, for large values of x'x/x’ X 'x. Under H, the distribution of the test
statistics xX’x/x’ X 'x is the same as that under assumption that x ~ N (0,I).

Remark 2.1. 1t is easy to note that theorem 2.2 is applicable if we replace £ by
AZ, A>0.

In particular case x = t, where t has the normal distribution N (0, £(8)) with
(0) = °(I+ OW), 0= of /0%, the hypothesis (2.11) reduces to

Haz 10=0. vs TK: W0 =0::50,>:0
and test which rejects H for sufficiently large

Fnp(0,) =t't /t” T+ 0,.W) 't

coincides with the test based on Neyman-Pearson’s lemma (see section 2.2 and
2.3).

Remark 2.2. More general theorem has been proved by Kariya and Sinha (1989)
by using Anderson’s representation theorem on the probability ratio of a maximal
invariant (cf. Kariya and Sinha, 1989, pp. 65-67 ).

2.5. The uniformly most powerful invariant test

Mathew (1989) has noted that if the positive eigenvalues of W are all equal
then the test based on Neyman-Pearson’s lemma does ot depend on the alterna-
tive 0,. It follows that in this case there exists the uniformly most powerful
invariant test (UMPIT), ;

The following lemma gives a necessary and sufficient conditions that assure
the existence of the UMPIT.

Lemma 2.2. There exists the UMPIT for testing
H:0=0 vs K:0>0
in the model (1.2) iff the number 4 of different eigenvalues of W is 2.
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Proof. Let ((0,) be the critical region of Neyman-Pearson’s test for a fixed
alternative K: 0=0,. It follows from the considerations in sections 2.2 and 2.3
that

h hk
CO)={Z: JViZ > c®)YViZ; | 1+0;0,),
i=1 i=1

where ¢(6,) is such that under H: 6=0

PriZ e CO)}=0a, a>0.

Note that
h
CO)={Z: Y a(0.)Z; > 0}, (2.12)
? i=1
where

a;(0,) = [vi(1 +0;0,) —c(0.)v; /(1 +0; 0.)].
It is easy to see that C(0,) given by (2.12) does not depend on 0, iff

al(e*) /ah(et) = az(et) /ah(et) Y ah—l(e') /ah(et) .
The above condition is satisfied iff ¢(0,)=c(1+ 0;0,) and h=2. The inverse
implication is obvious.

Remark 2.3. The case h=2 and 0, = 0 is covered by Mathew’s considerations. In

section 6 examples of two-way layouts are given that lead to the model with 2=2
and o, > 0. For details concerning such models see Baksalary et al. (1990).

Remark 2.4. It has been discussed in Gnot and Kleffe (1983) that if h=2 then
W=sp|I,, ,W| is a Jordan algebra, ie. Ac W= A’c W. In such a case

according to the theory of Seely (1971) for each function f‘c, there exists the
uniformly best invariant quadratic and unbiased estimator.

3.Wald’s test
The considerations of Seely and El-Bassiouni (1983) lead to exact Wald’s test
for testing H given by (1.4).
This test is based on Fy = y'Il,y/y'TLy, where IT; and II, are the orthogo-

nal projectors on R (X : U) n A{X") and A(X") n A[(U"), respectively.
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Lemma 3.1.

(i) Under H, y'Tly/c® ~ %%, where & = rank(X U)-rank(X),

(i) y'ILY/o? ~ x,z, where f = n-rank(X : U), while n is the total number of
observations,

(i) y'Iy and y'ILy are statistically independent.

From Lemma 3.1 we find that under H the ratio fy'Il;y /k y'ILy has a central
F-distribution with % and f degrees of freedom.

To get some geometrical interpretation of the above result let us define, for

an arbitrary matrices A and B with the same number of rows, the following
matrices

P,o=AA’A)A’, (the orthogonal projector on R (A)),
M, =I-P,, (the orthogonal projector on A((A)),
Cap=A'Mg A, (Schur’s complement of A’A in
A'’A AB )
B’A BB|’
Lemma 3.2.
() M, = MxUCyxU’ My, is the orthogonal projector on
RXIU) " A(X) = RXIU) n RAX),
(i) I, = Mx(I - UCy xU")Myx = My(I - XCx uX')My is the orthogonal projec-
tor on A(X') N A(U") = R'X i U) = R4(U) n R1(X),
(iii) Iy + Iy, = My
From lemma 3.2. and from (2.6) it follows, that Q'C*'Q = YTy does not depend

on the choice of the generalized inverse of C". Besides SSy=y/(II, + IL)y and
SS, = y'ILy .Thus Wald’s test rejects H for sufficiently large

h-1
FW=ZVEZI' /thh'

=1

It is easy to see that in the case A=2 this test coincides with the UMPIT given
in section 2.5. Generaly taking 6, — « in the Fyp(6,) we obtain

h h h
lim FNp(e,) =8lin 2 V; Z" /[z V; Zi /(1 fp a,-ﬂ.)] = Z V; Z" /Vh Zh -
g i 8,75 a1 i=1 i=1
h-1
which is a monotonic function of the ratio of Z ViZ; |V Z), = Fy. Thus Wald’s
i=1

test is equivalent to the test based on Fyp(6,) as 0, tends to infinity.
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Note that
X’ XX XU|_
3 I 0| (XX 0| [T XXXU
XX xt I 0 C||o I
and rank(X’ X)=p. It follows that rank(X:U)= p + g, where ¢ = rank(C) =
rank(X : U)-rank(X), and the multiplicity of zero eigenvalues of W is v, = n—

rank(X : U). Thus similarly as in Thompson’s approach Wald’s test by construc-
tion needs the assumption that W is singular (n > rank(X : U)).

4. Test based on admissible estimators of variance
components.

It follows from the consideration in section 3 and from (2.6) that under
assumption n > rank(X : U) (o, = 0) we have

h-1
y'n,y = z V; Zi and y'ﬂzy =Vp Zh . (4.1)

i=1
Following (2.2) E(y’Il,y) = tr(W)o? + ko®, k=rank(W), while E(y'TLy)=v,c>,
so that y'IIyy /¢ and y'ILy/v, are invariant and unbiased estimators of
[tr(W)/klo} + 6® and o respectively. It has been mentioned by Gnot and Michal-
ski (1992) that y'Il;y/k and y'ILy/v, are admissible invariant quadratic and

unbiased estimators of [tr(W)/k] cf+ o’ and o2, respectively, iff A = 2.
In Gnot et al. (1985) a full characterization of nonnegative admissible invari-
ant quadratic and unbiased estimators of po} + 6” is given for p such that

Pmin = P s Pmax »

where

o, tr(W *) — rank(W)
Pmin = § o, tr(W W +) —tr(W +)
0

for o,>0,

for o0,=0.

_tr(W?) — atr(W)
Pmax = tr(W) — a,rank(W) -

We can obtain a modification of Wald’s test taking as a test statistics the ratio
of nonnegative admissible invariant quadratic and unbiased estimators. Intui-
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tively, it seems to be reasonable to put as the numerator of the ratio the
admissible and nonnegative estimator of p,,.0%+o” and as the denominator,
the admissible and nonnegative estimator of p,,;,0% + o> In consequence the test
rejects the hypothesis H : 6= 0 for sufficiently large

h h
20— o)V Z; [ 3 (o — 0)0>V; Z; for oy, >0,
F, =4 o (4.2)

2(1,' V,-Zi /Vh Z,, for o =0,
i=1

In the case when o, =0 the above test has been proposed by Gnot and

Michalski (1991).
Another test based on variance component estimators has been proposed by

Michalski and Zmyslony (1992). At the construction of the test the authors used
the known fact in theory of variance component estimation, that for each unbiased

estimator y’Ay of o the matrix A can be decomposed as A, — A _, where A,
and A _ are nonzero nonnegative definite matrices. In the paper the authors

discuss the problem of an optimal choice of the estimator Y'Ay. One of them is
MINQUE that leads to the test rejecting H: 6 =0 for sufficiently large

Fi=YAyIYAy=)YVvi;Z; |y ;0 Z; , 4.3)
a:>0 a;<0

where o] = o; — tr(W)/rank(W).

5. Locally best tests

If the UMPI test does not exist for testing hypothesis (1.4), we can find tests
which are the best for alternatives close (in some sense) to the null hypothesis
and hope that such tests will also be good for far alternatives. We consider the
case, where the density function of x with respect to Lebesgue’s measure p on
R" is f(x,0), where a single parameter 0 is assumed to take values from an
interval on the real line. The null hypothesis H says that 6 = 0. If @ is a critical
region such that

| fxplo=0ydp=a, 5.1)
w
then the power function of the test is

p(®)= I.,, fix,0)dp .
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Let p(0) admit Taylor expansion around 6 = 0. Since p(0) = o, we have
p(0) =0+ 6p’(0) +0(6) .

If K is the class of one-sided alternatives 8 > 0, we need to maximize p’(0) at
0=0 to obtain a locally best (most powerful) one-sided test. We will assume
differentiation under the integral sign so that the quantity to be maximized is

p'(0)= jmf’(x,el 0= 0)dy..

Lemma 5.1. [Rao (1973), p.454]
Let o be any region such that

p©@=] fx0l0=0)dn=c
w
and o, be the region

fe: f(x,610=0) > kfx,0l0=0) ,
where & is such that the condition (5.1) is satisfied for w,. Then

| rrxplo=0ydu > [ £ (x,0/0=0)du.

The result is obtained by an application of Neyman-Pearson’s lemma [cf. Rao
(1973), p.446].

Now, applying lemma 5.1 to density function f{s,0) of the maximal invariant
statistics S from section 2 by straightforward calculations it can be checked that
the locally best invariant test (LBIT) is based on the following statistics

h-1 h
Fig=2,0ViZ /), viZ;=QQ /SSy .
i=1 i=1
Further, we prove that LBIT can be obtained in an equivalent way letting
0, = 0 in the Fyp(0,). Let us express the rejection region of the Neyman-Pear-
son’s test

h h
Fap®)=YVviZ /[, Vi Z, | 1+0;0,)] > cq
i=1 T
as
h h
'Y vi Z; (1 - 1/(1+ 0001/ [ Vi Z;/ (L + aB.)] > cly=(ca= 1) /6. .

=1 i=1
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Hence
h h
lim Fxp(0,) = lim [, v; Z; 0 / (1+0;0.)] /1Y, v Z; /(1 + 0 0,)] =
6,-0 6,-0 i=1 i=1
h-1 h
=Za,~v,-Z,-/ZV‘-Z,-=FLB.
i=1 i=1

The above result has been obtained by Westfall (1989).

6. Examples.

Numerical comparison of the power functions of tests can be found in several
papers. In unbalanced, random one-way ANOVA models LaMotte at al. (1988)
compared the tests based on Neyman-Pearson’s lemma with so called LM tests.
These models have also been used by El-Bassiouni and Seely (1988) to study the
efficiency of Wald’s test. Gnot and Michalski (1992) and Michalski and Zmyslony
(1992) have compared the power functions of all described here tests in the
random models corresponding to block designs. In all the considered models the
essential assumption that W is singular has been made. General conclusion is
that at a fixed number of observations the properties of the test strongly depend
on the multiplicity v, of zero eigenvalues of W.

In this section we give a numerical comparison of the power functions of the
tests for models corresponding to two-way layouts with W nonsingular, i.e. when
n=rank(X| U).

Let us consider an experiment in which n experimental units are arranged
in @ rows and b columns according to the axb incidence matrix N with entries
n,-j >0.

It is assumed that a linear model corresponding to described above two-way
layouts is the mixed model with random row effects, with fixed column effects
and without interaction. It can be presented as

y=XB+UE +e,
where y is an nx1 vector of observations, B is a bx1 vector of unknown column
effects,  is an axl vector of random row effects with the expectation 0 and
covariance matrix o}k, , while e is an nx1 vector of errors with the expectation

0, covariance matrix 021,, and uncorrelated with €. Besides X and U are nxb and

nxa known (0,1)-matrices of full ranks & and a. It is clear that
U'X=N, UU=D,and X'X=D,, where D, and D, are diagonal matrices with
the diagonal elements being the components of r = N1, and k=N"1_, respective-
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ly, where 1, denotes the 2x1 vector of ones. Under these assumptions the expec-
tation and the covariance matrix of y are

E(y)=XB, Cov(y)=0oUU" +0’I,. (6.1)

In this special case of the general model (1.2) the orthogonal projector M on
the kernel of X’, and the axa matrix C given by (2.3) have the form

M=(,-XD;'X),
C=D,-ND;'N'.

Let rank(C) = q. A two-way layout with a rows and b columns is said to be
connected if g=a—1. According to the considerations in section 2 for connected
two-way layouts the following inequality holds

nza+b-1,

and if n>a+b-1, then v,=n—-a-b+1 is the multiplicity of the zero eigenvalues of
W. Below two examples of layouts for which n=a+b-1 are given.

Example 1

HOOOOOOOOHM
_HOOOOOOOHHO
HOOOOOOHHOO
HOOOQOOHKHOOO
HOOOOHOOOO
HOOOHHOOOOO
HOOMHOOOOOO
HOMHMOOOOOOO
=HHOOOOOOOO

Example 2

1}
=k
CoCOO0CO0O0OCOHKHKHOD
COoOOCOHKRHHOOO
HHHEHOOOOOO
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A detailed characterization of such layouts have been given by Kageyama
(1985) (see also Baksalary et al., 1990, section 3).

In the first example the number % of different eigenvalues of W is 2,
(@;=5, vi=1; 0ay=0.5, v,=28)and in consequence there exist the UMPIT for
testing

H:0?=0 vs K: 0:>0

(cf. lemma 2.2). In Table 1 the power function p(8) of the UMPI test is presented
as a function of 0 = 03/0>. .

Table 1
The power function of the UMPI test for example 1
0 p(6)
.001 .0504
.010 .0540
.100 .0898
.500 .2055
1.000 2822
5.000 4221

10.000 4518
50.000 4793
100.000 4830
500.000 .4860
oo .4867

In the second example the UMPIT does not exist. The matrix W has 7 different
eigenvalues
(@, =189 vi=1; 0,=1.67 vo=1; 03=143 v3=1; o,=1.00 v,=4;
05=0.57 vs=1; 0g=0.33 vg=1; 0;=0.11 v;=1)
In Table 2 the power functions p(8) of Neyman-Pearson’s (NP) test based on
Fyp statistic, locally best (LB) test based on Fyj ratio, the test (GM) based on
the ratio F, of admissible estimators and the test (ZM) based on F, are presented

as functions of 6 = 0“1’/ o> In the last column of the table the attainable upper

bounds (AUB) of the power functions are presented. The values of AUB have
been defined by LaMotte at al. (1988) as values of the power function of the NP
test at 8 =0,. The losses of power functions of the tests in comparing with the

AUB are presented in the second column as natural numbers. This loss is
calculated according to the formula

1(8) = 100% [AUB(6) — p(6)] /p(6)
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Table 2

The power functions of the tests for example 2
0 NP LB GM ZM AUB
.010 0511 o 0511 o .0508 1 .0507 1 | 0511
.050 .0556 0 .0556 0 .0538 3 .0535 4 .0556
.100 .0610 0 .0610 0 .0574 6 .0569 7 .0610
500 0987 o {Q48L. . 1 0836 15 .0789 20 | .0988
1.000 1344 1 .1316 2 1100 18 .0980 27 1344
5.000 2290 10 2251 11 2138 16 1507 41 2540
10.000 2582 14 2530 16 2619 13 1666 45 3013
50.000 2890 20 2822 22 .3308 9 1834 50 .3638
100.000 2934 21 , .2864 24 .3433 8 1859 50 .3746
500.000 2974 22 2899 25 3541 8 1879 . 51 .3840

The powers of the tests have been computed using a modified procedure of Imhof
(1961). This procedure allows to compute the probability distribution function of
an arbitrary linear combination of t'E;t, i=1,2,...,A.

The inspection of Tables 1 and 2 shows a low power functions of all the tests
even for far alternatives. It is caused by the equation n=a+b-1 and in consequence
by the positive definitness of W. Below an example of the so called variance
balanced design is given (example 3).

Example 3

111100
100011
N=|010011
001011
000111

For this design the matrix W has two different eigenvalues
(=25, vi=4; 09=0, vy=n—-a-b+1=6) and in consequence the UMPIT
exists. In Table 3 the power function p(8) of the UMPI test is presented.

As we can see the behaviour of it is quite different than in former cases. The
function goes to 1 very fast if 0 tends to infinity.
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Table 3
The power function of the UMPI test for example 3

0 P(®)
.001 .0503
.010 .0526
.100 .0782
.500 2114
1.000 .3693
5.000 .8448
10.000 9436
50.000 9968
100.000 .9992
500.000 9999
go 1.0000
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